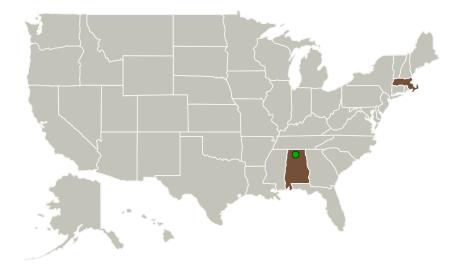
Scale-up of Nano-Engineered Anti-Reflection Coating Process for Large Plastic Optics, Phase I



Completed Technology Project (2011 - 2011)

Project Introduction

In a recently completed NASA SBIR program, Agiltron and the Massachusetts Institute of Technology developed a novel nanoporous UV anti-reflection coating technology for complex plastic optics. This coating is based on recent breakthroughs in self-assembled low index multilayer structures achieved at MIT, combined with Agiltron's mist coating processes. The UV AR coatings consisted of inter-connected oxide nanoparticles in the form of a 3D porous network. We successfully demonstrated this AR coating on a 3" by 3" PMMA plate and 1.25" diameter Fresnel lens with suppressed surface reflection below 1% in the UV range. The coating adhesion also passed standard optical surface cleaning procedures recommended by NASA. In this current SBIR program, Agiltron proposes to scale up the coating process to coat large scale PMMA Fresnel lens surfaces up to 0.25 meters in diameter in Phase I and 1 meter in diameter in Phase II. Agiltron will closely work with NASA to develop the evaluation process for coating uniformity and optical performance.

Primary U.S. Work Locations and Key Partners

Scale-up of Nano-Engineered Anti-Reflection Coating Process for Large Plastic Optics, Phase I

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Scale-up of Nano-Engineered Anti-Reflection Coating Process for Large Plastic Optics, Phase I

Completed Technology Project (2011 - 2011)

Organizations Performing Work	Role	Туре	Location
Nanotrons	Lead	Industry	Woburn,
Technologies	Organization		Massachusetts
Marshall SpaceFlight Center(MSFC)	Supporting	NASA	Huntsville,
	Organization	Center	Alabama

Primary U.S. Work Locations	
Alabama	Massachusetts

Project Transitions

0

February 2011: Project Start

September 2011: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/138482)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Nanotrons Technologies

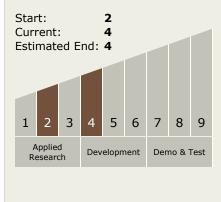
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Sangyup Song

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Scale-up of Nano-Engineered Anti-Reflection Coating Process for Large Plastic Optics, Phase I

Completed Technology Project (2011 - 2011)

Technology Areas

Primary:

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

